Aktualności

Naukowcy proponują „konfigurację motylkową” dla przyszłych misji satelitarnych
28-12-2023
Zespół polskich naukowców proponuje umieszczenie satelitów w konfiguracji „motylkowej” (ang. butterfly configuration), w tym satelitów na orbicie wstecznej, gdzie obecnie nie ma żadnych obiektów okrążających Ziemię. Taka konfiguracja orbitalna jest bardzo korzystna w zakresie badania zmian globalnych, m.in. zmian w ruchu obrotowym czy też spłaszczenia Ziemi spowodowanego topnieniem lodowców na biegunach. Wyniki badań nad optymalną konfiguracją przyszłych misji satelitarnych ukazały się w Journal of Geophysical Research: Solid Earth.


Satelity w konfiguracji motylkowej – Najder i in. (2023).

Sztuczne satelity umieszczane są zazwyczaj na orbitach okołobiegunowych z kątem nachylenia względem równika około 90 stopni (np. do obserwacji zmian w obszarach polarnych) albo na orbitach o mniejszych kątach nachylenia (np. 55 stopni w przypadku systemu GPS, 56 stopni w przypadku Galileo lub 0 stopni w przypadku satelitów geostacjonarnych). Pod kątami nachylenia od 120 do 180 stopni nie ma prawie żadnych satelitów okrążających Ziemię. W umieszczeniu satelitów pod kątem mniejszym niż 90 stopni pomaga ruch obrotowy Ziemi, dzięki któremu mniej paliwa należy zużyć do wyniesienia obiektu na orbitę. Umieszczenie satelity na orbicie wstecznej powyżej 90 stopni jest o wiele bardziej kosztowne. Jak się okazuje, tzw. orbita wsteczna, na której satelity poruszają się przeciwnie do kierunku obrotu Ziemi, jest bardzo korzystna w badaniach naszej planety. W ciągu tego samego okresu satelity na orbitach wstecznych wykonują więcej przelotów nad tymi samymi obszarami względem obserwatora na Ziemi. Przeloty satelitów są krótsze, ale za to częstsze niż ma to miejsce na standardowych orbitach. Z symulacji przeprowadzonych przez polskich naukowców wynika, że najlepiej stosować orbity wsteczne jeżeli chcemy lepiej poznać procesy globalne i ich zmiany w czasie. Dzięki takim orbitom można lepiej wyznaczyć zmiany spłaszczenia Ziemi, które spowodowane są topnieniem lodowców na Grenlandii i Antarktydzie, zmiany w pozycji bieguna oraz zmiany w środku ciężkości masy planety, czyli punktu, wokół którego orbitują wszystkie sztuczne satelity.

W artykule opublikowanym w Journal of Geophysical Research: Solid Earth zespół naukowców z Uniwersytetu Przyrodniczego we Wrocławiu przeprowadził symulacje różnych konfiguracji orbitalnych oraz wskazał optymalną orbitę dla przyszłym misji geodezyjnych. Naukowcy zaproponowali uzupełnienie istniejącej konfiguracji satelitów geodezyjnych LAGEOS i LARES o nowe satelity, które pozwalają zachować symetrię konfiguracji względem osi obrotu Ziemi. Dzięki temu powstaje konfiguracja motylkowa „butterfly configuration”. Przykładowo dla satelity nachylonego pod kątem 70 stopni względem bieguna proponuje się satelitę na tej samej wysokości nachylonego o 180-70=110 stopni względem bieguna. Zarówno pierwszy, jak i drugi satelita będzie orbitował nad tymi samymi obszarami Ziemi, jednak ten drugi na orbicie wstecznej będzie poruszał się przeciwnie do ruchu obrotowego planety. Konfiguracja motylkowa ma wiele zalet, m.in. taką, że niektóre efekty działające na satelity będą takie same, np. efekt związany z anomaliami w ruchu obrotowym Ziemi, a niektóre efekty będą miały przeciwne znaki, np. efekt obracania się płaszczyzny orbity za sprawą spłaszczenia Ziemi. Zatem, dzięki konfiguracji motylkowej można skutecznie oddzielić od siebie różne efekty obserwowane w anomaliach ruchu sztucznych satelitów, które są nierozróżnialne w przypadku pojedynczego satelity, a tym samym lepiej poznać procesy zachodzące na Ziemi i powodujące te anomalia.

Najbardziej optymalnym miejscem umieszczenia przyszłego satelity geodezyjnego okazał się kąt nachylenia 127 stopni i wysokość 5620 km. Taka konfiguracja zapewnia odbicie lustrzane parametrów orbitalnych satelity LAGEOS-2 w konfiguracji motylkowej. Satelita poruszając się na orbicie wstecznej, będzie miał okres obiegu względem stacji na obracającej się Ziemi 3h 13min, podczas gdy satelita LAGEOS-2 posiada ten sam okres obiegu równy 4h 22min mimo tej samej wysokości. Dzięki temu, stacja laserowa znajdująca się na Ziemi będzie mogła zarejestrować więcej przelotów satelity w ciągu dnia (średnio o 36% więcej), a satelita lepiej „zeskanuje” powierzchnię Ziemi, gdyż wykona więcej przelotów w tym samym czasie. Satelity geodezyjne mają kształt kuli oraz wyposażone są w reflektory odbijające wiązkę lasera dokładnie w tym samym kierunku, co kierunek wiązki padającej, umożliwiając tym samym bardzo dokładne pomiary odległości z teleskopów naziemnych. Takie satelity stanowią podstawę w badaniu zmian kształtu Ziemi spowodowanego procesami zachodzącymi w atmosferze, hydrologii lądowej, oceanach i skorupie ziemskiej oraz pozwalają na wyznaczenie zmian w pozycji bieguna. Jednak dotychczas wynoszone satelity nie zawsze były umieszczane w najkorzystniejszych miejscach, gdyż wszystkie mają kąt nachylenie nie większy niż 110 stopni. Dlatego, pomimo większych kosztów wyniesienia satelitów, warto umieszczać je tam, gdzie ich obecnie nie ma – na orbitach wstecznych.

Więcej informacji w artykule:
Najder, J., Sośnica, K., Strugarek, D., & Zajdel, R. (2023). A simulation study for future geodetic satellites tracked by satellite laser ranging. Journal of Geophysical Research: Solid Earth, 128(12), e2022JB026192. https://doi.org/10.1029/2022JB026192


powrót do poprzedniej strony
Poczta / Logowanie do systemu
Stacja permanentna GNSS 'WROC'
GISLab - Laboratorium GIS
Laboratorium Multisensoryki
Stacja permanentna GNSS 'WROC'
Nasze konferencje

 2nd Gathers Hackathon
Rzym (Włochy), 17 - 18 lutego 2024
 Advanced Gathers School
Rzym (Włochy), 12 - 16 lutego 2024
 2nd Summer School
Delft (Holandia), 28 sierpnia– 1 września 2023
 1st Gathers Hackathon
Wiedeń (Austria), 13-14 kwietnia 2023
 1st Summer School
WROCŁAW-RYBNIK, 19 – 24 września 2022
 Gathers Kick-off meeting
WROCŁAW, 4-5 grudnia 2019
 GNSS Meteorology Workshop 2019
WROCŁAW, 19 - 20 września 2019
 XXIII Jesienna Szkoła Geodezji im. Jacka Rajmana
Wałbrzych, 21 - 22 września 2017
 EUREF 2017 Symposium
Wrocław, 17 - 19 maj 2017
 EUREF 2017 Tutorial
Wrocław, 16 maj 2017
 III Polski Kongres Geologiczny
WROCŁAW, 14 - 18 września 2016 r
Kartka z kalendarza
Grudzień 2024Imieniny obchodzi:
Jan, Honorata, Tomasz

356 dzień roku (do końca pozostało 10 dni)
21
Sobota

Efemerydy dla słońca:Tranzyt słońca []:11:50:16
Brzask astronomiczny []:05:50:29Zachód słońca []:15:47:11
Brzask nawigacyjny []:06:30:55Zmierzch cywilny []:16:26:51
Brzask cywilny []:07:13:40Zmierzch nawigacyjny []:17:09:36
Wschód słońca []:07:53:20Zmierzch astronomiczny []:17:50:02
Kontakt
INSTYTUT GEODEZJI I GEOINFORMATYKI
Uniwersytet Przyrodniczy we Wrocławiu
ul. Grunwaldzka 53
50-357 Wrocław

NIP: 896-000-53-54, REGON: 00000 18 67

tel. +48 71 3205617
fax +48 71 3205617

e-mail: igig@upwr.edu.pl